Abstract: Medication regimen may be optimized based on individual drug efficacy identified by pharmacogenomic testing. However, majority of current pharmacogenomic decision support tools provide assessment only of single drug-gene interactions without taking into account complex drug-drug and drug-drug-gene interactions which are prevalent in people with polypharmacy and can result in adverse drug events or insufficient drug efficacy. The main objective of this project was to develop comprehensive pharmacogenomic decision support for medication risk assessment in people with polypharmacy that simultaneously accounts for multiple drug and gene effects. To achieve this goal, the project addressed two aims: (1) development of comprehensive knowledge repository of actionable pharmacogenes; (2) introduction of scoring approaches reflecting potential adverse effect risk levels of complex medication regimens accounting for pharmacogenomic polymorphisms and multiple drug metabolizing pathways. After pharmacogenomic knowledge repository was introduced, a scoring algorithm has been built and pilot-tested using a limited data set. The resulting total risk score for frequently hospitalized older adults with polypharmacy (72.04±17.84) was statistically significantly different (p<0.05) from the total risk score for older adults with polypharmacy with low hospitalization rate (8.98±2.37). An initial prototype assessment demonstrated feasibility of our approach and identified steps for improving risk scoring algorithms.

Learning Objective 1: Aproaches for builfing platform-independent comprehensive knowledge repository for pharmacogenomic decision support

Learning Objective 2 (Optional): Development of scroing algorithms to assess medication risk in people with polypharmacy based on multiple metabolic pathways and pharmacogenomic polymorphisms


Jiazhen Liu (Presenter)
Steven Institute of Technology

Carol Friedman, Columbia University
Joseph Finkelstein, Columbia University

Presentation Materials: